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In this paper, we show how the framework of information geometry, the natural geometry of discrete
probability distributions, can be used to derive the quantum formalism. The derivation rests upon a few
elementary features of quantum phenomena, such as complementarity and global gauge invariance. When
appropriately formulated within an information-geometric framework, and combined with a novel information-
theoretic principle, these features lead to the abstract quantum formalism for finite-dimensional quantum
systems, and the result of Wigner’s theorem. By means of a correspondence principle, several correspondence
rules of quantum theory, such as the canonical commutation relationships, are also systematically derived. The
derivation suggests that information geometry is directly or indirectly responsible for many of the central
structural features of the quantum formalism, such as the importance of square roots of probability and the
occurrence of sinusoidal functions of phases in a pure quantum state. Global gauge invariance is shown to play
a crucial role in the emergence of the formalism in its complex form.
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I. INTRODUCTION

The unparalleled empirical success of quantum theory
suggests that the mathematical formalism of quantum theory
accurately captures fundamental aspects of the workings of
the physical world. However, the elucidation of these aspects
has been hampered by the abstract nature of the mathemati-
cal framework �complex Hilbert space� in whose language
the quantum postulates are expressed. Over the past two de-
cades, there has been growing interest in bringing these as-
pects into the open by formulating a set of postulates that are
expressed in a simpler mathematical language that has a
more transparent physical basis, and showing that the quan-
tum formalism can be derived from these postulates �1–7�. A
major motivation for such a reconstruction is the expectation
that it might provide some indication as to the relative mal-
leability of different parts of the quantum formalism, an un-
derstanding that could provide useful guidance when at-
tempting to modify the quantum formalism �for example, to
allow nonlinear continuous transformations �8–10�� or when
attempting to build a theory of quantum gravity �see, for
example, �11��.

Much of the recent effort in reconstructing the quantum
formalism has been encouraged by belief in the hypothesis
that the concept of information might be the key, hitherto
missing, ingredient that, if appropriately conceptualized and
formalized, might make such a reconstruction possible
�1,2,5�. There have been several attempts to systematically
explore the reconstruction of the quantum formalism from an
informational starting point �for example, �2,4,12–21��. A
number of these approaches take an operational approach, so
that the statistical nature of measurements on quantum sys-
tems is taken as a given, and the framework of classical
probability theory is accordingly taken as the starting point.
Perhaps the earliest of these approaches is remarkable for
showing that one can derive a correct, nontrivial physical

prediction �Malus’ law� concerning a quantum experiment
from a simple information-theoretic principle �12�. However,
this approach does not lead to the reconstruction of the quan-
tum formalism itself, and other, more recent, approaches to
understand the quantum formalism on the basis of simple
information-theoretic principles within the framework of
probability theory are similarly restricted in their scope
�4,14–16�. In contrast, a number of recent approaches suc-
ceed in deriving a significant portion of the quantum formal-
ism by using the concept of information �2,17–21�, but they
do so at the cost of employing frameworks that assume a
priori the importance of the complex number field �35�. Such
assumptions significantly limit the degree to which these re-
constructions can elucidate the physical content of the quan-
tum formalism since one of the most mysterious mathemati-
cal features of the quantum formalism is being assumed at
the outset.

In this paper, we show that it is possible to reconstruct the
majority of the quantum formalism within a classical proba-
bilistic framework using the concept of information without
relying on abstract assumptions that presuppose the impor-
tance of the complex number field. In particular, the complex
Hilbert space structure of the quantum formalism is shown to
arise naturally from simpler physical ideas.

We adopt an operational approach, and take the probabi-
listic nature of measurements as a given. Accordingly, the
framework of classical probability theory is taken as a start-
ing point. We equip the probabilistic framework with a met-
ric, ds2= 1

4�idpi
2 / pi, known as the information metric �or

Fisher-Rao metric�, which determines the distance between
infinitesimally close probability distributions p= �p1 , . . . , pN�
and p�= �p1� , . . . , pN� �. This distance can be thought of as
quantifying the difficulty with which these distributions can
be distinguished from one another given a finite number of
samples from each. As we shall describe below, the metric
can be seen as a natural consequence of introducing the con-
cept of information into the probabilistic framework. Ac-
cordingly, we shall refer to this framework as the information
geometric framework �22�.*pgoyal@perimeterinstitute.ca
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Within this information-geometric framework, we formal-
ize a few elementary features of quantum phenomena, such
as complementarity and global gauge invariance. These fea-
tures can be understood as assertions about the physical
world quite apart from the setting of the quantum formalism
within which they are usually encountered, and are suffi-
ciently simple to be taken as primitives in the building up of
quantum theory. To these features we add an information-
theoretic principle, the principle of metric invariance. From
these ingredients, we reconstruct the principal features of the
quantum formalism.

This paper is organized as follows. In Sec. II, we present
an experimental framework and a set of postulates that de-
termine the theoretical model of a system in the context of
this experimental framework. In Sec. III, we show how these
postulates give rise to the finite-dimensional abstract quan-
tum formalism, namely the von Neumann postulates for
finite-dimensional systems �apart from the form of the tem-
poral evolution operator� and the result of Wigner’s theorem
�that a one-to-one map over the state space of a system that
represents a symmetry transformation of the system is either
unitary or antiunitary� �23�.

In Sec. IV, we formulate the average-value correspon-
dence principle �AVCP�, and use this to obtain the form of
the temporal evolution operator and, taking the infinite-
dimensional form of the quantum formalism as a given, de-
rive several correspondence rules including the canonical
commutation relationship �x ,px�= i�.

In Sec. V, it is shown how many of the postulates can be
regarded as reasonable generalizations of elementary experi-
mental facts that are characteristic of quantum phenomena,
are drawn from classical physics, or can be understood as
novel physical assertions. We conclude in Sec. VI with a
discussion of the insights provided by the derivation and of
some of the questions it raises.

II. EXPERIMENTAL FRAMEWORK AND POSTULATES

A. Experimental framework

We shall be concerned with constructing a theoretical
model of the abstract experimental setup shown in Fig. 1: �i�
a source emits a copy of a physical system of interest, �ii� a

preparation step then either selects or rejects the incoming
system, �iii� the system undergoes an interaction with a
physical apparatus, and �iv� the system undergoes a measure-
ment.

A measurement is viewed as a process that acts upon an
input system, and generates an output system together with
an observed outcome. Measurements are idealized as fol-
lows: �a� measurements have a finite number of possible out-
comes, �b� measurements are reproducible, so that immediate
repetition of a measurement yields the same outcome with
certainty, and �c� measurement outcomes obtained in many
runs of the experiment are characterized by a probability
distribution. A preparation is implemented by performing a
measurement upon the incoming system, and then selecting
the system �allowing it to pass� if a given outcome is ob-
tained, and rejecting it �blocking it� otherwise. Consideration
is restricted to interactions that are reversible and determin-
istic, and that preserve the integrity of the system upon
which they act.

An example of this abstract experimental setup is an ex-
periment where silver atoms emerge from a source �an
evaporator�, pass through a preparation step �implemented
using a Stern-Gerlach measurement�, undergo an interaction
with a uniform magnetic field, and finally undergo a Stern-
Gerlach measurement.

Experimental closure and experimental sets

In the above-mentioned Stern-Gerlach experiment, one
finds experimentally that the probability distribution that
characterizes the measurement data is independent of arbi-
trary interactions with the system prior to the preparation.
That is, the experiment has been arranged in such a way that
the measurement data are not influenced by conditions that
are not under experimental control. We shall say that experi-
mental setups of this kind are closed �or have the property of
closure�, and we shall restrict our consideration to such set-
ups.

In the Stern-Gerlach experiment, given a particular prepa-
ration, the measurement Stern-Gerlach device can be rotated
to perform a range of possible Stern-Gerlach measurements,
and different uniform magnetic field interactions can occur
between the preparation and measurement. In each of these
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FIG. 1. An abstract experimental setup. In each run of the experiment, a physical system �such as a silver atom� is emitted from a source,
passes a preparation step, undergoes an interaction, I, and is then subject to a measurement. The preparation is implemented as a measure-
ment, A�, which has NA� possible outcomes, followed by the selection of those systems that yield some outcome j �j=1,2 , . . . ,NA��. The
measurement A has NA possible outcomes.
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setups, the spin behavior of the system is being probed. In
the case of an abstract experimental setup, we can use the
concept of closure to formulate an operational procedure that
delineates the set of all setups that probe the same behavioral
aspect of a given system.

The procedure. The first step in the procedure is to iden-
tify the set of all measurements that probe precisely the same
behavioral aspect as some given measurement, A. We refer
to this set as the measurement set, A, generated by A. Con-
sider an experiment �Fig. 1� in which a system from a source
is subject to a preparation consisting of measurement, A�,
with NA� possible outcomes, with outcome j selected �j
=1, . . . ,NA��, followed by measurement A �with NA possible
outcomes�, without an interaction in the intervening time.
Suppose that the data obtained in the experiment are charac-
terized by a probabilistic source with NA possible outcomes
and with probability n-tuple p� = �p1 , p2 , . . . , pNA

�, where pi is
the probability of the ith outcome �i=1,2 , . . . ,NA�. If, for all
j, p� is independent of arbitrary pre-preparation interactions
with the system, so that the setup is closed, the preparation
will be said to be complete with respect to measurement A. If
this completeness condition also holds true when A and A�
are interchanged, then A and A� will be said to form a mea-
surement pair. For example, any Stern-Gerlach preparation is
complete with respect to a Stern-Gerlach measurement, and
any two Stern-Gerlach measurements form a measurement
pair.

The measurement set, A, generated by A is then defined
as the set of all measurements that �i� form a measurement
pair with A and �ii� are not a composite of other measure-
ments in A. In the Stern-Gerlach example above, if A is any
given Stern-Gerlach measurement, then it generates a mea-
surement set, A, consisting of all Stern-Gerlach measure-
ments of the form A�,�, where �� ,�� is the orientation of the
Stern-Gerlach device. Measurements that are composed of
two or more Stern-Gerlach measurements are excluded from
A by definition.

In the second step, we determine the set of all interactions
�the interaction set, I� with the system that can occur be-
tween a preparation �implemented using a measurement in
A� and a measurement �chosen from A�. Suppose that, in the
experiment of Fig. 1, an interaction, I, occurs between the
preparation and measurement. If, for all A ,A��A, the
preparation remains complete with respect to the subsequent
measurement, then I will be said to be compatible with A.
The set I is then defined as the set of all such compatible
interactions.

In the case of the Stern-Gerlach experiment, if an interac-

tion, I�B,�B,t,�t, consisting of a uniform B� field acting during
the interval �t , t+�t� in some direction ��B ,�B�, occurs be-
tween the preparation and measurement, one finds experi-
mentally that the completeness of the preparation with re-
spect to the measurement is preserved; that is, the interaction
is compatible with the set of all Stern-Gerlach measurements
of the form A�,�. Hence, in this example, all interactions in
which a uniform magnetic field acts between the preparation
and measurement are in the interaction set, I.

In terms of these definitions, a closed setup consists of a
source of systems where each system is prepared using a

measurement A��A, is subject to an interaction I�I, and
then undergoes a measurement A�A. The set of all such
setups constitutes an experimental set, and will be said to be
generated by measurement A.

Finally, we provide an operational definition of the terms
subsystem and composite system. Suppose that a physical
system admits an experimental set generated by a measure-
ment A�1� in measurement set A�1�, and also admits an ex-
perimental set generated by measurement A�2� in measure-
ment set A�2�, where the sets A�1� and A�2� are disjoint. In
that case, we shall say that each experimental set probes a
different subsystem of the same physical system. Suppose
further that the physical system admits an experimental set
generated by measurement A that consists of measurement
A�1� followed by A�2�. We shall then say that this experimen-
tal set probes a system that is a composite system.

B. Postulates

The postulates, stated below, determine the abstract model
of a physical system subject to any setup chosen from an
experimental set. There are two key novel postulates. First,
the Complementarity postulate �Postulate 2.1� expresses
within a probabilistic framework the idea that, when a mea-
surement is performed on a physical system, the data ob-
tained only provide information about half of the experimen-
tally accessible degrees of freedom of the state of the system.
In particular, it is assumed that, when a measurement is per-
formed, one of 2N possible events occurs, with a probability
determined by the state of the system, but that only one of N
possible outcomes is actually observed �each outcome
coarse-graining over two of the events�, so that the out-
comes only provide information about half of the event prob-
abilities �see Fig. 2�. Second, the Metric Invariance postulate
�Postulate 3.5�, an information-theoretic postulate, rests upon
the idea that the distinguishability of two states is a quantity
intrinsic to this pair of states, and therefore does not depend
upon the measurement used to distinguish between them. As
described later �Sec. V C�, this idea leads directly to the re-

1 2 3 4 2N-1 2N

P1 P2 P2N-1 P2NP3 P4

1 2 N

FIG. 2. Complementarity postulate. Probability tree showing the
events that occur when measurement A is performed, and the cor-
responding outcomes �circled� that are observed. One of 2N pos-
sible events occurs, with probability P1 , P2 , . . . , P2N, respectively.
The individual events are not resolved. Outcome i is obtained
whenever either event 2i−1 or 2i is realized �i=1, . . . ,N�.
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quirement that the metric over state space �which is induced
by the information metric, introduced through the Informa-
tion Metric postulate, which is a measure of the distinguish-
ability of nearby states� is invariant under mappings over
state space.

Several of the postulates �2.3, 2.5, 3.6, 3.7, and 4� rest
upon elementary properties of the classical Hamilton-Jacobi
model of a particle �see Sec. V B�. The global gauge invari-
ance property of the Hamilton-Jacobi model is of key impor-
tance, and we generalize this property to an abstract physical
system by assuming that, if the state of the system is repre-
sented as �p1 , . . . , pN ;�1 , . . . ,�N� with respect to a measure-
ment, where the pi are the outcome probabilities of the mea-
surement and the �i are real degrees of freedom, then any
predictions made on the basis of the state are invariant under
the transformation �i→�i+�0, for all i=1, . . . ,N, for any �0.
The Measure Invariance �2.5� and the Gauge Invariance pos-
tulates �3.6� are both particular instances of this general as-
sumption.

The remaining postulates are either drawn directly from
the framework of classical physics �3.1-3.4� or from elemen-
tary experimental observations characteristic of quantum
phenomena �1.1 and 1.2�. The reader is referred to Sec. V for
further discussion of the physical origin of the postulates.

Statement of the postulates

The abstract model of a physical system subject to an
experimental setup where the measurements and interactions
are chosen from a measurement set A and interaction set I,
respectively, satisfies the following postulates.

1. Measurements
1.1 Outcomes. When any measurement A�A is per-

formed, one of N �N�2� possible outcomes is observed.
1.2 Measurement simulability. For any given pair of mea-

surements A ,A��A, there exist interactions I ,I��I such
that A� can, insofar as the outcome probabilities and output
states of the measurement are concerned, be simulated by an
arrangement where I is immediately followed by A, which,
in turn, is immediately followed by I�.

2. States
2.1 Complementarity. When any given measurement A

�A is performed on the system, one of 2N possible events
occurs with probability P1 , . . . , P2N, respectively. The indi-
vidual events are unobserved. Outcome i is observed when-
ever event �2i−1� or event 2i occurs.

2.2 States. The state, S, of the system with respect to
measurement A�A is given by Q= �Q1 ,Q2 , . . . ,Q2N�T,
where Qq� �−1,1�, q=1, . . . ,2N. The probability of event q
is given by Pq=Qq

2, and the variable, �q=sgn�Qq�, which is
defined if Pq�0, is a binary degree of freedom �a polarity�
associated with event q.

2.3 State representation. The state, S, of a system with
respect to measurement A can be represented by the pair
�p� ,�� �, where p� = �p1 , . . . , pN� and �� = ��1 , . . . ,�N� are real
n-tuples, and where pi is the probability that the ith outcome
of measurement A is observed. In particular, the state is
given by Q= (�p1cos ���1� ,�p1sin ���1� , . . . ,
�pNcos ���N� ,�pNsin ���N�), where ��·� is a nonconstant dif-
ferentiable function.

2.4 Information metric. The metric over P
= �P1 , P2 , . . . , P2N−1 , P2N� is the information metric, ds2

= 1
4�q=1

2N dPq
2 / Pq

2.
Measure invariance. The measure,

	�p1 , . . . , pN ;�1 , . . . ,�N�, over �p� ,�� � induced by the metric
over Q satisfies the condition 	�p1 , . . . , pN ;�1 , . . . ,�N�
=	�p1 , . . . , pN ;�1+�0 , . . . ,�N+�0� for all �0.

3. Transformations
3.1 Mappings. Any physical transformation of the system,

whether active �due to temporal evolution� or passive �due to
a change of frame of reference�, is represented by a map, M,
over the state space, S, of the system.

3.2 One-to-one. Every map, M, that represents a physical
transformation of the system is one-to-one.

3.3 Continuity. If a physical transformation is continu-
ously dependent upon the real-valued parameter n-tuple �,
and is represented by the map M�, then M� is continuously
dependent upon �.

3.4 Continuous transformations. If M� represents a con-
tinuous transformation, then, for some value of �, M� re-
duces to the identity.

3.5 Metric invariance. The map M preserves the metric
over the state space, S, of the system.

3.6 Gauge invariance. The map M is such that, for any
state S�S, the probabilities, p1� , p2� , . . . , pN� , of the outcomes
of measurement A�A performed upon a system in state
S�=M�S� are unaffected if, in any representation, �pi ;�i�
��p� ,�� �, of the state S written down with respect to A, an
arbitrary real constant, �0, is added to each of the �i.

3.7 Temporal evolution. The map, Mt,�t, which represents
temporal evolution of a system in a time-independent back-
ground during the interval �t , t+�t�, is such that any state, S,
represented as �pi ;�i�, of definite energy E, whose observ-
able degrees of freedom are time-independent, evolves to
�pi� ;�i��= �pi ;�i−E�t /
�, where 
 is a nonzero constant with
the dimensions of action.

The above postulates, together with the average-value
correspondence principle �AVCP�, which will be given in
Sec. IV A, suffice to determine the form of the abstract quan-
tum model. From the Outcomes postulate, it follows that,
when any measurement in A is performed on the system, one
of N possible outcomes is observed. Accordingly, we shall
denote the abstract quantum model by q�N�.

Finally, the Composite Systems postulate, below, is
needed in order to obtain a rule for relating the quantum
model of a composite system to the quantum models of its
component systems:

4. Composite Systems. Suppose that a system admits a
quantum model �model 1�, with respect to the measurement
set A�1� whose measurements have N possible outcomes, and
admits a quantum model �model 2� with respect to measure-
ment set A�2� whose measurements have N� possible out-
comes, where the sets A�1� and A�2� are disjoint.

Consider the quantum model �model 3� of the system with
respect to the measurement set A=A�1��A�2� that contains
all possible composite measurements consisting of a mea-
surement from A�1� and a measurement from A�2�. If the
states of the system in models 1 and 2 can be represented as
�pi ;�i� �i=1,2 , . . . ,N� and �pj� ;� j�� �j=1,2 , . . . ,N��, respec-
tively, then the state of the system in model 3 can be repre-
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sented as �pl� ;�l�� �l=1,2 , . . . ,NN��, where pl�= pipj� and �l�
=�i+� j�, where l=N��i−1�+ j.

III. DEDUCTION OF THE QUANTUM FORMALISM

A. States and dynamics in Q space

According to the States postulate, the state of a system
prepared using any measurement in the measurement set A
can be represented by Q= �Q1 ,Q2 , . . . ,Q2N−1 ,Q2N�. Now, the
Information Metric postulate assigns the metric

ds2 =
1

4�
q=1

2N
dPq

2

Pq
�1�

over P= �P1 , . . . , P2N�, which, from the relation Pq=Qq
2 �q

=1, . . . ,2N�, implies that the metric over Q is Euclidean,
namely

ds2 = �
q

dQq
2. �2�

Hence, the state space of the system can be represented by
the set of all unit vectors in a 2N-dimensional real Euclidean
space, which we will refer to as Q space or Q2N.

By the Mappings and One-to-One postulates, any physical
transformation is represented by a one-to-one map, M, over
state space, Q2N. Furthermore, by the Metric Invariance pos-
tulate, it follows that M must be an orthogonal transforma-
tion of the unit hypersphere, S2N−1, in Q2N.

B. Global gauge invariance, and the complex form of states
and dynamics

1. Determination of function �(·)

According to the State Representation postulate, the state
Q of a system with respect to some measurement A�A can
be written

Q = „
�p1cos ���1�,�p1sin ���1�, . . . ,

�pNcos ���N�,�pNsin ���N�… . �3�

In order to determine the unknown function ��·�, we first
determine the metric over Q in terms of the pi and �i.

Using Eq. �2�,

ds2 = dQ1
2 + dQ2

2 + ¯ + dQ2N−1
2 + dQ2N

2

= �
i=1

N
1

4

dpi
2

pi
+ �

i=1

N

pi��2��i�d�i
2. �4�

The measure over �p1 , . . . , pN ;�1 , . . . ,�N� induced by this
metric is proportional to the square root of the determinant of
the metric, and so is given by

	�p� ,�� � = 	0�
i=1

N

	����i�	 , �5�

where 	0 is a constant, which marginalizes to give

	i��i� � 
 ¯
 	�p� ,�� �dVī = c	0	����i�	 , �6�

with dVı̄�dp1¯dpNd�1¯d�i−1d�i+1¯d�N, as the measure
over �i, where c is a constant.

Now, using the Measure Invariance postulate, 	i��i+�0�
is given by


 ¯
 	�p� ,�1, . . . ,�i−1,�i + �0,�i+1, . . . ,�N�dVī

=
 ¯
 	�p� ,�̃1 + �0, . . . ,�̃i−1 + �0,�i + �0,

�̃i+1 + �0, . . . ,�̃N + �0�dṼī

=
 ¯
 	�p� ,�̃1, . . . ,�̃i−1,�i,�̃i+1, . . . ,�̃N�dṼī = 	i��i� ,

�7�

with dṼı̄�dp1¯dpNd�̃1¯d�̃i−1d�̃i+1¯d�̃N, where the
variable substitution �̃ j =� j −�0 for j� i has been used to
obtain the second line. Hence, the measure 	i��i� is indepen-
dent of �i. Therefore, from Eq. �6�, ����=a�+b, where a ,b
are constants, where a�0 since, from the State Representa-
tion postulate, the function ��·� is not constant.

Defining �i=a�i+b, we can therefore, from Eq. �3�, write
the state of a system with respect to some measurement A
�A as

Q = ��p1 cos �1,�p1 sin �1, . . . ,�pN sin �N�T. �8�

2. Mappings

In this section, the general form of mappings that repre-
sent physical transformations of a system will be determined.
The derivation proceeds in three steps.

Step 1: Imposition of the Gauge Invariance postulate. In
this step, we show that the imposition of the Gauge Invari-
ance postulate restricts M to a subset of the set of orthogo-
nal transformations, and that these transformations can be
recast as unitary or antiunitary transformations acting on a
suitably defined complex vector space.

From Eq. �8�, the Gauge Invariance postulate, and
the relation �i=a�i+b given above, it follows that the
probabilities p1� , p2� , . . . , pN� of the outcomes of
measurement A performed on a system in state
Q�=M�Q� are unaffected if, in any state Q
= ��p1cos �1 ,�p1sin �1 , . . . ,�pNcos �N ,�pNsin �N�T written
down with respect to measurement A, an arbitrary real con-
stant, �0, is added to each of the �i. Our goal in this section
is to determine the constraint imposed on M by this condi-
tion.

Since M is an orthogonal transformation �Sec. III A�, it
can be represented by the 2N-dimensional orthogonal matrix,
M. Under its action, the vector Q transforms as

Q� = MQ . �9�

In order to determine the most general permissible form of
M, it is suffices to consider two special cases.
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First consider the case in which all but one of the pi are
zero. In the case in which pi=1, one obtains

pk� =
1

2
�
ki + �ki� +

1

2
�
ki − �ki�cos 2�i + 
ki sin 2�i

�10�

for k=1, . . . ,N, where


ki = M2k−1,2i−1
2 + M2k,2i−1

2 ,

�ki = M2k−1,2i
2 + M2k,2i

2 ,


ki = M2k−1,2i−1M2k−1,2i + M2k,2i−1M2k,2i. �11�

The invariance condition implies the conditions


ki = �ki and 
ki = 0 for all i,k , �12�

which implies that M takes the form of an N-by-N array of
two-by-two submatrices,

M =�
T�11� T�12�

¯ T�1N�

T�21� T�22�
¯ T�2N�

¯

T�N1� T�N2�
¯ T�NN�

� , �13�

where

T�ij� = 
ij
cos �ij − �ij sin �ij

sin �ij �ij cos �ij
�

is a two-by-two matrix composed of a enlargement matrix
�scale factor 
ij� and a rotation matrix if �ij =1 or a
reflection-rotation matrix if �ij =−1, with rotation angle �ij in
either case.

Before considering the second type of special case, we
note that, due to the special form of M above, it is possible to
rewrite Eq. �9� in a simpler way. The state Q can be faith-
fully represented by

v =�
Q1 + iQ2

Q3 + iQ4

¯

Q2N−1 + iQ2N

� , �14�

so that, from Eq. �8�,

vi = �pie
i�i. �15�

Define the complex matrix

W =�

11e

i�11K�11
¯ 
1Nei�1NK�1N


21e
i�21K�21

¯ 
2Nei�2NK�2N

¯ ¯ ¯


N1ei�N1K�N1
¯ 
NNei�NNK�NN

� , �16�

where K� is the conditional complex conjugation operation
defined as

K�z = �z if � = 1

z* if � = − 1,
� �17�

where z�C. Then, Eq. �9� is equivalent to the equation

v� = Wv , �18�

where v� is defined analogously to v.
Consider now the second special case, where two of the

pi, say pi and pj �i� j�, are set equal to 1 /2, and the remain-
der are set to zero. In the case in which pi= pj =1 /2, with i
� j, one obtains the expression

pk� =
1

4
�
ki

2 + 
kj
2 + 2
ki
kj cos���ki − �kj� + ��ki�i − �kj� j��� ,

�19�

and the invariance condition implies that, for any k and any
i� j, the values of �ki and �kj must be the same unless 
ki
=0 or 
kj =0.

Since M represents the mapping M, and, by the One-to-
One postulate, M−1 exists, the matrix M−1 represents the
mapping M−1. Hence, the matrix M−1=MT must also satisfy
the Invariance postulate. Now, from Eq. �13�, the matrix MT

takes the form

MT =�
�T�11��T �T�21��T

¯ �T�N1��T

�T�12��T �T�22��T
¯ �T�N2��T

¯

�T�1N��T �T�2N��T
¯ �T�NN��T

� , �20�

and the corresponding complex matrix is

W̃ij = 
 jie
−i�ji�jiK�ji. �21�

Consider the transformation v�=W̃v, with the above spe-
cial case, namely pi= pj =1 /2, where i� j. In this case, one
obtains

pk� =
1

4
�
ik

2 + 
 jk
2 + 2
ik
 jk cos��− �ik�ik + � jk� jk�

+ ��ik�i − � jk� j��� . �22�

The invariance condition implies that, for any k and any i
� j, the values of �ik and � jk must be the same unless 
ik
=0 or 
 jk=0. But this implies that, in W, all of the nonzero
entries have the same value of �ik. Therefore, W is of one of
two types,

W = V or W = VK , �23�

corresponding to the cases in which the �ij =1 and the
�ij =−1, respectively, where

Vij = 
ije
i�ij , �24�

and K is the complex conjugation operator, Kv=v*.
Now, since M is orthogonal, it follows that V is unitary.

To see this, consider M with all �ij =1. In that case,
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�MTM��ij� = �
k

�T�ki��TT�kj� = �
k


ki
kjR�− �ki�R��kj�

= �
k


ki
kjR��kj − �ki� , �25�

where A�ij� denotes the �i , j�th two-by-two submatrix of A,
with A being an N by N array of two-by-two submatrices,
and where R��� is a two-by-two rotation matrix with rotation
angle �. Consider also

�V†V�ij = �
k


ki
kje
i��kj−�ki�. �26�

By inspection, the orthogonality condition �MTM��ij�=�ijI,
where I is the two-by-two identity matrix, is equivalent to the
condition of unitarity, �V†V�ij =�ij. Therefore, since M is or-
thogonal, V is unitary. Hence, from Eq. �23�, matrix W is
either unitary or antiunitary.

Finally, we must show that transformations of the types in
Eq. �23� satisfy the Gauge Invariance postulate for any state
Q, not just for the special cases of Q considered above. This
follows immediately: we note that the addition of �0 to each
of the �i in the complex form of the state, v, generates the
state ei�0v, that is,

v ——→
+�0

ei�0v . �27�

As a result, the vector v�=Vv transforms as

v� ——→
+�0

ei�0v�, �28�

and the vector v�=VKv transforms as

v� ——→
+�0

e−i�0v�. �29�

Since pi�= 	vi�	
2, the pi� are independent of the overall phase of

v�, so that, in both Eqs. �28� and �29�, the pi� remain un-
changed by the addition of �0 to the �i. Therefore, the trans-
formations V and VK both satisfy the Gauge Invariance pos-
tulate for all Q.

Step 2: General unitary and antiunitary transformations.
We have shown so far that the imposition of the Gauge In-
variance postulate restricts M to a subset of the set of or-
thogonal transformations, and that each transformation in
this subset can be recast either as a unitary transformation or
as an antiunitary transformation. However, we have not ruled
out the possibility that there exist unitary or antiunitary trans-
formations that are not equivalent to orthogonal transforma-
tions belonging to the above-mentioned subset. In this sec-
tion, it shall be shown that, in fact, any N-dimensional
unitary or antiunitary transformation satisfies the One-to-
One, Metric Invariance, and Gauge Invariance postulates.

Consider first the arbitrary unitary transformation U,
where Uij =
ije

i�ij. The transformation

v� = Uv �30�

is equivalent to the transformation

Q� = MQ , �31�

where M�ij�=
ijR��ij�. Now, as we observed above, the con-
dition of unitarity of U, namely �U†U�ij =�ij, is equivalent to
the orthogonality condition of M. Therefore, M is orthogo-
nal.

Similarly, in the case of the arbitrary antiunitary transfor-
mation UK, where U is defined as above and K is the com-
plex conjugation operator, the corresponding matrix M is
given by M�ij�=
ijR��ij�F, where F= � 1 0

0 −1 �. In this case,

�MTM��ij� = �
k

�MT��ik�M�kj� = �
k


ki
kjFR�− �ki�R��kj�F

= �
k


ki
kjR��ki − �kj� , �32�

which is �ijI due to the unitarity of U. Therefore, M is or-
thogonal in this case also.

Since M is an orthogonal matrix, it satisfies the One-to-
One and Metric Invariance postulates. The invariance of the
pi� required by the Gauge Invariance postulate follows from
the observation made previously that, under the addition of
�0 to the �i in v, the transformed vectors v�=Uv or v�
=UKv yield unchanged values of pi�.

Hence, any unitary or antiunitary transformation satisfies
the One-to-One, Metric Invariance, and Gauge Invariance
postulates. In particular, we have obtained the result of
Wigner’s theorem that a one-to-one map over state space that
represents a symmetry transformation of a system is either
unitary or antiunitary.

Step 3: Physical transformations. By the Continuity pos-
tulate, a physical transformation �such as a reflection-rotation
of a frame of reference� that depends continuously upon a
real-valued parameter n-tuple � is represented by a map
M�, which depends continuously upon �. From the above
discussion, the set of mappings that represent physical trans-
formations are the set of all unitary and antiunitary transfor-
mations. The set of all unitary transformations and the set of
all antiunitary transformations are disjoint and it is not pos-
sible to continuously transform a unitary transformation into
any antiunitary transformation. Therefore, M� is repre-
sented either by unitary transformations or by antiunitary
transformations.

Furthermore, by the Continuous Transformations postu-
late, a continuous physical transformation that depends con-
tinuously upon a real-valued parameter n-tuple � is repre-
sented by a map M�, which reduces to the identity map for
some value of �. However, only the set of unitary transfor-
mations include the identity. Therefore, a continuous physi-
cal transformation can only be represented by unitary trans-
formations. In particular, since temporal evolution of a
system is a continuous physical transformation, it must be
represented by unitary transformations.

C. Representation of measurements

Suppose that a system undergoes measurement A and
yields outcome j. By the assumption of reproducibility �Sec.
II A�, after A has been performed and outcome j obtained,
immediate repetition yields the same outcome with certainty.
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Therefore, for every outcome j there exists a corresponding
state, v j, such that the measurement A upon the system in
state v j yields outcome j with certainty. From Eq. �14�, since
pj =1 and all the other pj are zero, we have that

v j = �0, . . . ,ei�j, . . . ,0�T, �33�

where � j is undetermined.
By the Measurement Simulability postulate, measurement

A� can be simulated by an arrangement consisting of a mea-
surement A followed immediately before and after by suit-
able interactions. These interactions bring about continuous
transformations of the system. From the results of the previ-
ous section, these interactions must, therefore, be represented
by unitary transformations, which we shall denote U and V,
respectively �see Fig. 3�. In the following, we shall establish
the form of these matrices, and then obtain an expression for
the outcome probabilities for measurement A� performed on
a system in state v.

First, from the Outcomes postulate and the assumption of
reproducibility, there exist N states v1� ,v2� , . . . ,vN� such that
measurement A� performed on a system in state vi� yields
outcome i with certainty. Hence, the arrangement in Fig. 3
must be such that A yields outcome i with certainty when the
input state to the arrangement is vi�. For this to be the case, U
must transform vi� to a state of the form vie

i�i, where �i is
arbitrary. That is, the matrix U must satisfy the relations

Uvi� = vie
i�i, i = 1,2, . . . ,N . �34�

Second, if outcome i is obtained from the arrangement,
the output state of the arrangement must be of the form

vi�e
i�i�, where �i� is arbitrary. But, immediately after measure-

ment A, the system is in state vi up to an overall phase.
Hence, the matrix V must satisfy the relations

Vvi = vi�e
i�i� i = 1,2, . . . ,N . �35�

From Eq. �33�, the vi form an orthonormal basis for CN.
From Eq. �34�, vi�=U†vie

i�i, which, since U is unitary, im-
plies that the vi� also form an orthonormal basis. Therefore,
any state, v, can be expanded as �ici�vi�, with ci��C, and the
matrices U and V are determined by the relations in Eqs. �34�
and �35� up to the �i and the �i�.

It is now possible to determine the measurement prob-
abilities if a system in state v undergoes measurement A�.
Using Eq. �34� and the expansion v=�ici�vi�, the first inter-
action of the arrangement transforms v into

U
�
i

ci�vi�� = �
i

ci�vie
i�i. �36�

Using Eq. �15�, the probability that measurement A in the
arrangement yields outcome i is therefore 	ci�e

i�i	2= 	ci�	
2.

Hence, measurement A� performed on the state v yields out-
come i with probability 	ci�	

2. If outcome i is obtained, the
outgoing state of measurement A is vi, so that the output
state of the arrangement is Vvi which is vi� up to an overall
phase.

In summary, every measurement, A��A, has an associ-
ated orthonormal basis, �v1� ,v2� , . . . ,vN� �. If measurement A�
is performed upon a system in state v, the probability, pi�, of
obtaining outcome i and corresponding output state vi� is
	ci�	

2, where ci� is determined by the relation v=�ici�vi�, which
is the Born rule.

Expected values

If the ith outcome of measurement A� has an associated
real value ai�, the expected value obtained in an experiment
in which a system in state v undergoes measurement A� is
defined as

�A�� = �
i

ai�pi�. �37�

Since pi�= 	ci�	
2 and ci�=vi�

†v, this expression can be also writ-
ten as

�A�� = �
i

v†�vi�ai�vi�
†�v = v†
�

i

vi�ai�vi�
†�v = v†A�v ,

�38�

where the matrix A���ivi�ai�vi�
† is Hermitian since the ai�

are real.

D. Composite systems

1. Tensor product rule

In order to derive the tensor product rule, we shall apply
the Composite Systems postulate to the case of a composite
system with two subsystems with abstract models q�N� and
q�N��, respectively, where the composite system has the ab-
stract model q�N��.

Suppose that the subsystems are in states represented by
�pi ;�i� and �pj� ;� j��, respectively, and the state of the com-
posite system is represented by �pl� ;�l�� �l=1, . . . ,N�� in the
manner defined by the Composite Systems postulate. If we
write the states of the subsystems in complex form,

v�1� = ��p1ei�1,�p2ei�2, . . . ,�pNei�N�T

and

v�2� = ��p1�e
i�1�,�p2�e

i�2�, . . . ,�pN�
� ei�

N�
� �T,

respectively, where �i=a�i+b and � j�=a� j�+b, and, simi-
larly, we write the state of the composite system as

v = ��p1�e
i�1�,�p2�e

i�2�, . . . ,�pN�
� ei�

N�
� �T,

where �l�=a�l�+b, then it follows from the Composite Sys-
tems postulate that v can simply be written as v�1� � v�2�.

U Vv Uv v VvMeasurement
A

~ ~

Result

FIG. 3. Simulation of measurement A�. A unitary transforma-
tion, U, transforms the input state, v, into Uv. Measurement A is
performed on this state, and yields an outcome and the outgoing
state, ṽ, which is then transformed by the unitary transformation V
into the output state Vṽ.
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More generally, consider a composite system with d sub-
systems, numbered 1,2 , . . . ,d, in states v�1� ,v�2� , . . . ,v�d�, re-
spectively. We can regard subsystems 1 and 2 as comprising
a bipartite composite system, system 1�, which, according to
the above result, is in state v�1� � v�2�. Next, we can regard
system 1� and subsystem 3 as comprising a bipartite com-
posite system, system 2�, which is therefore in state �v�1�

� v�2�� � v�3�. Continuing in this way, we can see that the
state of the composite system with d subsystems has the state
v=v�1� � v�2� � . . . � v�d�.

2. Representation of subsystem measurements

Suppose that measurement A�1��A�1�, represented by
N-dimensional Hermitian operator A�1�, with eigenstates vi

�1�

and eigenvalues ai, respectively, is performed on subsystem
1 of dimension N of a bipartite composite system of dimen-
sion N�=NN�, where N� is the dimension of subsystem 2.
With respect to the abstract quantum model q�N�� of the
composite system, measurement A�1� is not in the measure-
ment set A of the composite system. However, it is conve-
nient to be able to describe measurement A�1� as an
N�-dimensional operator A, in the framework of q�N��.

To determine the form of A, it is sufficient to consider the
effect of A on product states of the form vi

�1�
� v�2� of the

composite system, where A�1�vi
�1�=aivi

�1�. If the composite
system is in such a state, then subsystem 1 is in state vi

�1�.
Therefore, when measurement A�1� is performed, result ai is
obtained with certainty, and the state of subsystem 1 is un-
changed �up to an irrelevant overall phase�. Therefore, the
state of the composite system remains unchanged. If we re-
quire that A has eigenvectors vi

�1�
� v�2�, with respective ei-

genvalues ai, it follows that A can be taken to be A�1� � I�2�,
where I�2� is the identity matrix in the model of subsystem 2,
with the only freedom being a physically irrelevant overall
phase in each of the eigenstates of A�1�. This result general-
izes trivially to the case of a measurement performed on one
or more subsystems of a composite system consisting of d
subsystems. We shall refer to such a measurement as a sub-
system measurement.

IV. TEMPORAL EVOLUTION AND THE
CORRESPONDENCE RULES OF QUANTUM THEORY

We begin by stating the average-value correspondence
principle �AVCP� and then using it to derive several gener-
alized operator rules that connect the average values of op-
erators at different times. The commonly used operator rules
of quantum theory follow as a special case. Using the AVCP
and the Temporal Evolution postulate, we then derive the
explicit form of the temporal evolution operator. Finally, we
illustrate how the AVCP can be used to derive commutation
relations by deriving �x ,px�= i�.

A. Average-value correspondence

Suppose that, in a classical experiment, a measurement of
observable A on a physical system can be implemented by an
arrangement where a number of other measurements of ob-
servables A� ,A� , . . . are performed on the same system �per-

haps performed at a different time to the measurement of A�,
such that the outcome value of the measurement of A can be
calculated as a function of the outcome values of measure-
ments of A� ,A� , . . .. For example, a measurement of the po-
sition of a particle of mass m at time t+�t can be imple-
mented by measuring its position, x, and momentum, px, at
time t, and computing the function x+ px�t /m. The AVCP,
stated below, then asserts that, in this case, providing certain
conditions are met, a corresponding quantum experiment can
be constructed where quantum measurements A ,A� ,A� , . . .
�which may be subsystem measurements�, corresponding to
classical measurements of A ,A� ,A� , . . ., are performed on
copies of the physical system, such that the same functional
relation holds on average between the outcome values of the
quantum measurements, the average being taken over infi-
nitely many trials of the quantum experiment. See Sec. V for
discussion of the origin of the principle.

Average-value correspondence principle

Consider a classical idealized experiment in which a sys-
tem �possibly a composite system� is prepared in some state
at time t0, and is allowed to evolve in a given background
�see the example in Fig. 4�. Suppose that a measurement of
A�m��m�2�, performed on the system at time t2 with value
a�m�, can be implemented by an arrangement where measure-
ments of A�1� ,A�2� , . . . ,A�m−1� are performed upon one copy
of the system at time t1, and the values of their respective
outcomes, denoted a�1� ,a�2� , . . . ,a�m−1�, are then used to com-
pute the output f�a�1� ,a�2� , . . . ,a�m−1��, where f is an analytic
function, so that the relation

a�m� = f�a�1�,a�2�, . . . ,a�m−1�� ���

holds for all initial �classical� states of the system.
Consider the case in which the quantum measurements

A�1� ,A�2� , . . . ,A�m� �which may be subsystem measure-
ments�, with operators A�1� ,A�2� , . . . ,A�m�, represent the mea-
surements of A�1� ,A�2� , . . . ,A�m�, respectively. Then, consider
the following idealized quantum experimental arrangement
consisting of several setups, each consisting of identical
sources and backgrounds, where, in each setup, a copy of the
system is prepared in the same initial state, v0, at time t0.

In one setup, only measurement A�m� is performed �at
time t2� and, for any i , j with i� j and i , j�m−1, the mea-
surements A�i� ,A�j� are performed �at time t1� in �i� the same
setup if �A�i� ,A�j��=0, and �ii� different setups if �A�i� ,A�j��
�0. Let the values of the outcomes of the measurements
A�1� , . . . ,A�m� in any given run of the experimental arrange-
ment be denoted a�1� , . . . ,a�m�, respectively. The function
f�a�1� ,a�2� , . . . ,a�m−1�� is defined as simple provided that its
polynomial expansion contains no terms involving a product
of eigenvalues belonging to measurements whose operators
do not commute. If f is simple, then ��� holds on average, the
average being taken over an infinitely large number of runs
of the experiment.

B. Generalized operator rules

We will now apply the AVCP to derive operator relations
that hold when the function f takes various useful forms. In
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each instance of f , we shall first derive a generalized opera-
tor rule that relates the expected values of the relevant op-
erators at different times. Then, taking the special case in
which the expected values are computed at the same time,
we obtain the corresponding operator rule, which relates the
operators themselves.

For simplicity, we shall consider the simple case of a clas-
sical experiment where a system is subject to measurements
of A and B at time t1, and to a measurement of C at time t2.

The generalization to experiments involving more than two
measurements at t1 is trivial. We shall suppose that a mea-
surement of C, with value c, can be implemented by an ar-
rangement in which the measurements of A and B are per-
formed, with respective values a and b, and the function
f�a ,b� then computed, so that the relation

c = f�a,b� �39�

holds for all initial states of the system.
In a quantum model of the appropriate experimental ar-

rangement, let the operators that represent these measure-
ments be denoted A, B, and C, respectively. To simplify the
presentation, we shall only consider the case in which these
operators have finite dimension, N; the results obtained be-
low can be readily shown to apply in the infinite-dimensional
case. Let the elements of orthonormal sets of eigenvectors of
A, B, and C be denoted vi, v j�, and vk�, respectively �i , j ,k
=1,2 , . . . ,N�, let the corresponding eigenvalues be denoted
ai, bj, and ck, and let the probabilities of the ith, jth, and kth
outcomes of measurements A, B, and C in any given
experimental arrangement be denoted by pi, pj�, and pk�,
respectively.

Case 1. f is a function of a only

In this case, according to the AVCP, the quantum experi-
ment simply consists of two setups, involving two copies of
the system, where A is performed on one copy at time t1 and
C on the other copy at time t2. Consequently, we obtain the
relation

�C�t2
= �f�A��t1

, �40�

which holds for all v0. We can summarize the above result in
the form of the generalized function rule,

c�t2� = f„a�t1�… � �C�t2
= �f�A��t1

∀ v0, �41�

where, for clarity, the times at which the outcomes are ob-
tained has been explicitly indicated. In the special case in
which t= t1= t2, we obtain the usual operator rule, the func-
tion rule,

c = f�a� � C = f�A� . �42�

Case 2. f(a ,b)= f1(a)+ f2(b)

In this case, by straightforward application of the AVCP,
one finds that, whether or not the operators A, B commute,
one obtains the generalized sum rule,

c�t2� = f1„a�t1�… + f2„b�t1�… � �C�t2

= �f1�A��t1
+ �f2�B��t1

∀ v0. �43�

In the special case in which t= t1= t2, we obtain the sum rule,

c = f1�a� + f2�b� � C = f1�A� + f2�B� . �44�

Case 3. f(a ,b)= f1(a)f2(b)

In this case, application of the AVCP yields the general-
ized product rule,

C

B

c

a

Equal

t1

t2 System 1

System 1
A

b

t0 System 1

f f(a,b)

c

(i)

Bait1

t2

System 1 A bj

t0 System 1

CSystem 3

System 3

System 3

System 2

System 2

f(ai,bj)

ck

Equal
on

average

f

(ii)

FIG. 4. An example of the application of the AVCP. �i� A clas-
sical experiment showing the measurements of A, B, and C per-
formed at times tA, tB, and tC, respectively, with values denoted as
a, b, and c, respectively. Here, tA= tB= t1 and tC= t2. Suppose that
one finds that the relation c= f�a ,b� holds for all initial states of the
system. �ii� The corresponding quantum experiment. Three copies
of the system are prepared in the same initial state, v0, at time t0,
and are placed in identical backgrounds. In this example, it is as-
sumed that the operators A and B do not commute. Hence, by the
AVCP, measurements A and B are performed on different copies of
the system. Measurement C is performed on a separate copy of the
system. In any given run of the experiment, the probabilities that
measurements A, B, and C yield values ai, bj, and ck �i , j ,k
=1, . . . ,N� are pi, pj�, and pk�, respectively. The AVCP then asserts
that, provided the polynomial expansion of f�a ,b� contains no prod-
uct terms involving a and b, the relation c̄= f�a ,b� holds for all
initial states, v0, of the system, where the average is taken over an
infinite number of runs of the experiment; that is, �kckpk�
=�ij f�ai ,bj�pipj� for all v0.
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c�t2� = f1„a�t1�…f2„b�t1�… � �C�t2

= �f1�A�f2�B��t1
∀ v0 if �A,B� = 0. �45�

In the special case in which t1= t2, we obtain the product
rule,

c = f1�a�f2�b� � C = f1�A�f2�B� if �A,B� = 0. �46�

Note that there is no rule in the case in which A and B do not
commute.

C. Temporal evolution

In this section, we will use the AVCP, together with the
Temporal Evolution postulate, to derive the explicit form of
the temporal evolution operator for a system in a time-
dependent background.

From results derived previously, over the course of the
interval �t , t+�t�, the state v�t� evolves as

v�t + �t� = Ut��t�v�t� , �47�

where Ut��t� is the unitary matrix that represents temporal
evolution of the system during �t , t+�t�. Suppose now that
the background of the system is time-independent during this
interval. Then we shall write Ut��t� as Vt��t�. Now, for 0
��t1+�t2��t, and �t1 ,�t2 both positive, we have

Vt��t1 + �t2� = Vt+�t1
��t2�Vt��t1� . �48�

But the time independence of the background implies that
Vt+�t1

��t2�=Vt��t2�. Therefore,

Vt��t1 + �t2� = Vt��t2�Vt��t1� , �49�

which can be solved to yield

Vt��t1� = exp�− iKt�t1� , �50�

where Kt is a Hermitian matrix.
To determine the nature of Kt, we proceed as follows. In

the classical model of a physical system in a time-
independent interval �t , t+�t�, the classical Hamiltonian, H,
for the system is not explicitly dependent upon time during
this interval. On the assumption that H is a simple function
of the observables of the system, and that the measurements
of these observables are represented by quantum measure-
ments, it follows from the AVCP that the corresponding
Hamiltonian operator is also not explicitly dependent upon
time during this interval. More precisely, suppose that H
= f�A1 , . . . ,AM� is a simple function, f , of the observables
A1 , . . . ,AM, and is not explicitly a function of time, t, during
the interval �t , t+�t�. If the operators A1 , . . . ,AM represent
measurements of the observables A1 , . . . ,AM, respectively,
then, by the AVCP, there exists an operator H
= f�A1 , . . . ,AM�, which represents the classical Hamiltonian,
H. Since t does not appear explicitly in H during the above-
mentioned interval, it cannot appear explicitly in H during
this interval. Therefore, in particular,

Ht = Ht+�t, �51�

where Ht denotes the Hamiltonian operator at time t. In ad-
dition, in the classical model, the total energy of the system

is constant during this interval for all states of the system.
Therefore, by the generalized function rule, the relation

�Ht�t = �Ht+�t�t+�t �52�

holds for any state v. Hence, from Eqs. �51� and �52�, it
follows that

�Ht�t = �Ht�t+�t �53�

for all v. But

�Ht�t+�t = �Ht�t + i��Kt,Ht��t�t + O��t2� . �54�

Therefore, the commutator �Kt ,Ht�=0, which implies that
there exist N mutually orthogonal eigenvectors, v1 , . . . ,vN,
which Kt and Ht share in common. In particular, the state
v j�j=1,2 , . . . ,N� is an eigenvector of Ht, with some eigen-
value Ej.

Now, if the system is in an eigenstate, v j, with eigenvalue
kj, of Kt, at time t, the state evolves as

v�t + �t� = e−ikj�tv�t� . �55�

Therefore, during the interval �t , t+�t�, this state remains an
eigenstate of Ht, and is therefore a state of constant energy,
Ej, during this interval. In addition, since evolution only af-
fects the overall phase of the state, the observable degrees of
freedom of the state are time-independent during this inter-
val. But, by the Temporal Evolution postulate, recalling that
�i=a�i+b, the state v�t�, representing a system in a time-
independent background of definite energy, Ej, whose ob-
servable degrees of freedom are time-independent, evolves
as

v�t + �t� = e−iEj�t/
�v�t� , �56�

where 
�=
 /a. By comparison of Eqs. �55� and �56�, we
find that kj =Ej /
� holds for j=1,2 , . . . ,N, which implies
that Kt=Ht /
�. Hence, in a time-independent background,
any state v evolves as

v�t + �t� = exp�− iHt�t/
��v�t� . �57�

In order to generalize to the case of temporal evolution in
a time-dependent background, we split the interval �t , t
+�t� into intervals of duration �, approximate the evolution
during each of these intervals assuming that the background
is time-independent, and then take the limit as �→0,

Ut��t� = Ut+�t−���� ¯ Ut+����Ut���

= lim
�→0

�Vt+�t−���� ¯ Vt+����Vt���� , �58�

which, upon expansion, yields

Ut��t� = I −
i


�
Ht�t + O��t2� , �59�

so that

i
�
dv�t�

dt
= Htv�t� . �60�

The value of the constant 
� is determined to be � by com-
parison with experiment.
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D. Commutation relations

We have shown above that the operator rules �the func-
tion, sum, and product rules� follow as special cases of the
generalized operator rules. Remarkably, these generalized
operator rules also enable the derivation of other types of
correspondence rule, such as the measurement commutation
relations �including Dirac’s Poisson-Bracket rule� and
measurement-transformation commutation relations �24�.
Here, taking the infinite-dimensional form of abstract quan-
tum formalism as a given, we shall give one example,
namely the derivation of the measurement commutation re-
lation �x ,px�= i�.

The position-momentum commutation relationship

We consider the special case of structureless and massless
particle moving in the +x direction, where measurements of
the x component of position, the x component of momentum,
and the energy are represented by the operators x ,px ,H, re-
spectively.

First, to determine the relationship of H to the operators x
and px, we make use of the fact that the relation H=cpx,
where c is the speed of light, holds for all classical states
�x , px� of the system, so that, from the function rule, it fol-
lows that H=cpx.

Next, to obtain a relation between x and px, we make use
of the fact that, in the quantum model, the expected value of
x at time t+�t can be calculated in two separate ways. First,
from the definition of �x�t, the relation

�x�t+�t = �Ut
†��t�xUt��t��t

= �
1 +
iH�t

�
�x
1 −

iH�t

�
��

t
+ O��t2�

= �x�t +
i

�
�t�Hx − xH�t + O��t2�

= �x�t −
ic

�
�t��x,px��t + O��t2� �61�

holds for all states, v, of the system. Second, using the gen-
eralized function rule, it follows from the classical relation
x�t+�t�=x�t�+c�t+O��t2� that the relation

�x�t+�t = �x�t + c�t + O��t2� �62�

holds for all v.
Equating the above two expressions for �x�t+�t, we obtain

v†�x,px�v = i� �63�

for all v, which implies that

�x,px� = i� . �64�

V. PHYSICAL COMPREHENSIBILITY
OF THE POSTULATES

A. Postulates based upon experimental facts

The Outcomes and Measurement Simulability postulates
can be viewed as a direct generalization of experimental ob-

servations made on Stern-Gerlach experiments performed on
silver atoms.

Consider an experiment in which Stern-Gerlach prepara-
tions and measurements are performed upon silver atoms,
and where the set A consists of the elements A�,� represent-
ing Stern-Gerlach measurements in the direction �� ,��. In
this experimental setup, which is closed in the sense defined
earlier, we find that each measurement yields one of two
possible outcomes. The Outcomes postulate generalizes this
finding by asserting that, when performed on a given system,
all measurements in a measurement set yield the same num-
ber, N, of possible outcomes.

If, in the above experiment, an interaction consisting of a
uniform magnetic field acts between the preparation and
measurement, one finds that the probabilities of the measure-
ment outcomes are the same as those obtained if a different
Stern-Gerlach measurement is performed with the interaction
absent. Using this observation, one finds that it is possible to
simulate measurement A�,� using any given measurement

Ã�A if followed immediately before and after by suitable
interactions. The simulation behaves precisely as A�,� inso-
far as the probabilities of the measurement outcomes and the
corresponding output states are concerned. The Measurement
Simulability postulate can be regarded as a direct generali-
zation of this observation.

B. Postulates drawn from classical physics

The Mappings and One-to-One postulates correspond to
the classical assumptions that physical transformations are
represented by mappings over state space, and that these
mappings are one-to-one. The Continuity and Continuous
Transformations postulates are identical in form to the cor-
responding classical assumptions.

Postulates obtained through classical-quantum correspondence

A general guiding principle in building up a quantum
model of a physical system is that, in an appropriate limit,
the predictions of the quantum model of the system stand in
some one-to-one correspondence with those of a classical
model of the system. The key idea we shall employ here is
that a quantum model of a particle corresponds, in the appro-
priate classical limit, to the Hamilton-Jacobi ensemble model
of the particle.

In the Hamilton-Jacobi model of particle of mass m mov-
ing along the x axis, the state of the ensemble is given by
(P�x , t� ,S�x , t�), where P�x , t� is the probability density func-
tion over position, and S�x , t� is the action function, and the
governing equations are

�P

�t
+

�

�x

P

1

m

�S

�x
� = 0,

1

2m

 �S

�x
�2

+ V�x,t� = −
�S

�t
, �65�

where V�x , t� is the potential. The observables are the prob-
ability density function, P�x , t�, the local momentum, �S /�x,
and the total energy, −�S /�t �see �25�, for example�. We con-
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sider coarse position measurements, and discretize the
Hamilton-Jacobi state (P�x , t� ,S�x , t�), as �pi

�CM� ;Si�, where
pi

�CM� is the probability that the position measurement yields
outcome i �i=1, . . . ,N�, and Si is the action associated with
position i. Therefore, on the assumption that the quantum
state of the particle can be put into one-to-one correspon-
dence with the classical state in the classical limit, it follows
that the quantum state of the particle must be expressible in
the form �pi ;�i�, where, again, the pi are the probabilities of
the position measurement, and where the �i are N real de-
grees of freedom. In the limit, we assume pi= pi

�CM� and Si
=
�i, where 
 has the dimensions of action.

Now, on the basis of empirical observations, it is reason-
able to infer that, in the limit of infinite precision, a coarse
position preparation is complete �in the sense defined in Sec.
II� with respect to a coarse position measurement. Therefore,
a direct generalization of the above observation is that the
state of a system described by the abstract model q�N� with
respect to some measurement A can be represented by �p� ,�� �,
where p� = �p1 , . . . , pN� are the outcome probabilities of mea-
surement A. As will be discussed below, this assumption
provides the motivation for the State Representation postu-
late.

Using this correspondence, we can transpose a number of
the elementary features of the Hamilton-Jacobi model across
to the quantum model of the particle, which leads to several
of the postulates.

Global gauge invariance

In the continuum Hamilton-Jacobi model, the observables
associated with S�x , t� for a system in state (P�x , t� ,S�x , t�)
are �S /�x and −�S /�t. Furthermore, the Hamilton-Jacobi
equations only depend upon S�x , t� through these observ-
ables. Hence, the transformation S�x , t�→S�x , t�+S0 gives
rise to no change in the values of the observables of the
system at time t or any other time, and is therefore a global
gauge transformation of the model. Therefore, the discretized
form of the model has a global gauge invariance property,
namely that, for a system with state �pi

�CM� ;Si�, the transfor-
mation Si→Si+S0 for i=1, . . . ,N and for any S0 is a global
gauge transformation, thus leaving invariant all physical pre-
dictions made on the basis of the state.

From this property of the Hamilton-Jacobi model, using
the above classical-quantum correspondence, we assume, in
the quantum model of a particle, and, even more generally
for the abstract quantum model q�N�, that the transformation

�pi;�i� → �pi;�i + �0� , �66�

where �0�R, is also a gauge transformation. From this as-
sumption, we now shall draw two postulates.

Postulate 3.6: Gauge Invariance

First, we note that, as a direct result of this global gauge
invariance assumption, it follows that a transformation �rep-
resenting passive or active physical transformation of the
system� of the state �pi ,�i� to the state �pi� ;�i�� is such that
the pi� are unchanged if an arbitrary real constant, �0, is
added to each of the �i. This is the content of the Gauge

Invariance postulate, which may be regarded as a specific
example of the global gauge invariance property.

Postulate 2.5: Measure Invariance

Second, we impose the requirement that the measure �or,
in the language of Bayesian probability theory, the prior�
over �p1 , . . . , pN ,�1 , . . . ,�N� induced by the metric over state
space �which metric arises from the Information Metric pos-
tulate� is compatible with the global gauge invariance prop-
erty, and therefore satisfies the relation

	�pi;�i� = 	�pi;�i + �0� �67�

for any �0, which is the content of the Measure Invariance
postulate.

The requirement of the consistency of the measure with
the global gauge invariance property can be understood as
follows. Suppose that one is performing Bayesian inference
on the quantum system, and one uses the measure as one’s
prior over state space. If one’s knowledge about the quantum
system includes the fact that it has a global gauge invariance
property, then the prior over the pi and �i that one employs
should reflect this fact. Otherwise, one’s inference will some-
times lead to predictions that are not consistent with the glo-
bal gauge invariance property.

Postulate 3.7: Temporal Evolution

Consider the special case of a system in a time-
independent background whose observable degrees of free-
dom are time-independent. According to the Hamilton-Jacobi
equations, the state of such a system evolves in time �t as

„P�x,t + �t�,S�x,t + �t�… = „P�x,t�,S�x,t� − E�t… ,

where E is the energy of the ensemble. That is, the temporal
rate of change of the unobservable degree of freedom en-
codes the total energy of the system.

Using the above classical-quantum correspondence, we
assume that the quantum model of a particle in a time-
independent background that is in a state of definite energy
with time-independent observable degrees of freedom
evolves as �pi ;�i�→ �pi ;�i−E /
�t� during the interval �t , t
+�t�. The Temporal postulate directly transposes this as-
sumption to the quantum model q�N�.

Postulate 4: Composite Systems

Consider a composite system, described in the model
q�N��, consisting of two subsystems that are known to be in
states represented by �pi ;�i� and �pj� ;� j��, respectively, with
i=1, . . . ,N and j=1, . . . ,N�, and N�=NN�. The composite
system is in a state represented by �pl� ,�l��, where l=N��i
−1�+ j, and we assume that

pl� = pipj�, �68a�

�l� = g��i,� j�� , �68b�

where g is a function, symmetric in its arguments, to be
determined.
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Suppose that the first subsystem undergoes the gauge
transformation �pi ;�i�→ �pi ;�i+�0�. We require that this
transformation leads to a gauge transformation of the com-
posite system, so that

�pl�,�l�� → „pl�,�l� + h��0�… , �69�

where h is some function to be determined. Together with
Eq. �68b�, this implies that g is linear in its first argument.
Applying the same argument to the second subsystem, one
obtains that g��i ,� j��=c�i+d� j�+e. Imposing symmetry, and
setting e=0 without loss of generality, we obtain g��i ,� j��
=c��i+� j��.

To determine c, we apply the Temporal Evolution postu-
late. We require that, if the energies of the subsystems are E
and E�, respectively, the energy of the composite system is
E+E�. From the Temporal Evolution postulate, it follows at
once that c=1. Hence, we obtain g��i ,� j��=�i+� j. Therefore,
the state of the composite system �pl� ,�l��= �pipj� ;�i+� j��,
which is the content of the Composite Systems postulate.

Alternatively, one can obtain this result more directly
from the Hamilton-Jacobi model. We note that, if, with re-
spect to position measurements along the x and y axes, the
discretized Hamilton-Jacobi state of a particle is �pi ;Si� and
�pj� ;Sj��, respectively, where i=1, . . . ,N and j=1, . . . ,N�,
then, with respect to �x ,y�-position measurements, its state is
�pl� ;Sl��= �pipj� ;Si+Sj��, where l=N��i−1�+ j. By the
classical-quantum correspondence, and then generalizing to
the abstract quantum model, q�N�, we obtain the same result.

C. Novel postulates

Postulate 2.1: Complementarity

According to the discussion of correspondence above, the
state S�t�, written with respect to some measurement A�A,
can be represented by the pair �p� ,�� �, where p� contains the
outcome probabilities of the measurement, and �� is an or-
dered set of real-valued degrees of freedom. Hence, the state
consists of a mixture of probabilities and degrees of freedom
unconnected to probabilities, and measurement A yields in-
formation about the pi but not the �i. The Complementarity
postulate is motivated by the aesthetic desideratum that the
quantum state, as far as possible, should consist of probabili-
ties of events rather than being such a mixture, and aims to
express the restriction on measurement A as a restriction on
the ability of measurement A to completely resolve the
events that occur when it is performed.

In particular, we hypothesize that, when measurement A
is performed, there are, in fact, 2N possible events, with
respective probabilities P1 , . . . , P2N, and that outcome i is
observed whenever either event 2i−1 or event 2i is realized.
We note that similar assumptions have been made in a toy
model of quantum theory in order to give concrete expres-
sion to complementarity �26�. In the Discussion, we provide
a tentative explanation for the unobservability of the indi-
vidual events.

Postulate 2.2: States

The States postulate asserts that the state of a system
with respect to measurement A�A is given by Q

= �Q1 , . . . ,Q2N�T, with Qq� �−1,1�, where Pq=Qq
2. Hence, in

addition to the Pq, this postulate asserts that there is an ad-
ditional, binary degree of freedom, �q, associated with each
event q, where �q=sgn�Qq�, which is defined whenever Pq
�0.

The motivation for the introduction of the �q is the fol-
lowing. If one takes the P themselves as the state space of
the system, one finds that nontrivial one-to-one transforma-
tions of the state space that preserve the metric over the state
space �as we shall require in the Metric Invariance postulate,
described below� are not possible. A simple way to allow the
existence of such transformations is to take all Q as the state
space of the system, for then there exist transformations,
namely orthogonal transformations of the Q, which preserve
the metric over the Q. Such an extension of the state space is
an assumption that, although formally rather natural, pres-
ently awaits a clear physical basis.

Postulate 2.3: State Representation

The State Representation postulate connects together the
hypothesis, expressed by the States postulate, that the state of
a system is given by Q= �Q1 , . . . ,Q2N�, and the above asser-
tion that the state can be represented by �p� ,�� �.

First, note that, since pi=Q2i−1
2 +Q2i

2 , given p1 , . . . , pN, the
state Q can, without loss of generality, be written as

Q2i−1 = �pi cos �i,

Q2i = �pi sin �i, �70�

where �1 ,�2 , . . . ,�N are N real degrees of freedom.
The State Representation postulate now connects the �i

together with the �i by asserting that �i=���i�, where ��·� is
a differentiable function, not a constant, to be determined.

Postulate 2.4: Information Metric

The Information Metric postulate asserts that the metric
over the space of probability distributions P is the informa-
tion metric. The following argument shows explicitly how
the metric arises from the concept of information.

Suppose that Alice has two coins, A and B, characterized
by the probability distributions p= �p1 , p2� and p�= �p1� , p2��,
respectively, and suppose that she chooses coin A, tosses it n
times, and then sends the data to Bob, without disclosing
which coin she chose. If Bob knows p and p�, how much
information does the data provide him about which coin was
tossed?

Using Bayes’ theorem and Stirling’s approximation for
the case in which n is large, on the assumption that coins A
and B are a priori equally likely to be chosen, one finds that
PA / PB=exp�n�i=1

2 pi ln�pi / pi���, where PA is the probability
that the tossed coin is A given the data, and likewise for PB.
When the probability distributions are close, so that p�=p
+dp, the argument of the exponent can be expanded in the
dpi to give PA / PB=exp�2nds2�, where ds2= 1

4�idpi
2 / pi.

Now, the information gained by Bob, �I, is defined as
�I�U�1 /2,1 /2�−U�PA , PB�, with U being an entropy �un-
certainty� function such as the Shannon entropy. But, since
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PA+ PB=1 and since PA / PB is determined by ds, once U is
selected, �I is determined by ds. This result immediately
generalizes to the case in which p and p� are M-dimensional
probability distributions �M �2�. Hence, from an informa-
tional viewpoint, it is natural to endow the space of discrete
probability distributions with the information metric, ds2

= 1
4�idpi

2 / pi.
We remark that the information metric is the infinitesimal

form of the statistical distance, dS=cos−1��i
�pipi��, between

two probability distributions, p= �p1 , . . . , pN� and p�
= �p1� , . . . , pN� �, introduced by Wootters �13� �see also the dis-
cussion in �27��.

Postulate 3.5: Metric Invariance

The Metric Invariance postulate accords the metric over
state space a fundamental place in the theoretical framework:
any transformation of state space is required to preserve the
distance between any pair of nearby states.

The postulate is based on the intuitive physical idea that
the distance �which is a measure of the degree of distinguish-
ability� between any pair of nearby states is a quantity that is
intrinsic to this pair of states, and is therefore the same irre-
spective of the measurement from whose perspective the
states are observed. More precisely, suppose that there are
two nearby states, Q= �Q1 , . . . ,Q2N� and Q�= �Q1� , . . . ,Q2N� �,
written down with respect to measurement A, a distance
d�Q ,Q�� apart with respect to the metric over state space. If
these states are now observed with respect to measurement
A�, then, by the Measurement Simulability postulate, this is

equivalent to observing the states Q̃=MQ and Q̃�=MQ�,
respectively, using measurement A, where M represents the
interaction I and is known to exist from the Measurement
Simulability postulate. By the above assumption of the in-
variance of distance with change of measurement perspec-

tive, we require that d�Q ,Q��=d�Q̃ ,Q̃�� for all nearby
states, which implies that d�Q ,Q��=d�MQ ,MQ�� for all
nearby Q ,Q�. By assuming that this condition must hold
also in the case in which M represents a discontinuous trans-
formation, we obtain the Metric Invariance postulate.

Average-value correspondence principle

The general notion of average-value correspondence be-
tween the behavior of a physical system when modeled in
the classical and quantum frameworks, respectively, is famil-
iar in elementary quantum mechanics through Ehrenfest’s
theorem �28�. However, the possibility that such a correspon-
dence might serve as the basis for a constructive principle
that allows the correspondence rules of quantum theory to be
determined by appropriately chosen classical relations does
not appear to have been widely explored �36�.

The intention behind the AVCP is to formulate the notion
of average-value correspondence in a form that is sufficiently
exact that, roughly speaking, it allows the logic of Ehren-
fest’s argument to be reversed, enabling correspondence
rules of quantum theory to be derived in a systematic manner
from relations known to hold in classical physics.

The precise form of the principle is arrived at by consid-
ering a sequence of particular examples �see Ref. �24� for

details�. The key difficulty is what the quantum experiment
must be in the case in which the operators involved are non-
commuting. For example, suppose that, in the classical
framework, a measurement of C at time t can be imple-
mented by performing measurements of A and B at time t,
and suppose that it is known that operators A and B represent
measurements of A and B, respectively, and that �A ,B��0.
In this case, the AVCP asserts that the quantum measure-
ments are performed on separate copies of the system,
thereby sidestepping the problem of measurement ordering.

The application of the AVCP is restricted to particular
functions f�a�1� ,a�2� , . . . ,a�m−1�� in order that the case of mea-
surements of products of classical observables whose quan-
tum operators are noncommuting does not need to be ad-
dressed. However, this restriction does not prevent the
derivation of the correspondence rules that one commonly
requires when applying the quantum formalism.

VI. DISCUSSION

A. Discussion concerning individual events and their polarities

The Complementarity and States postulates assert that,
when measurement A is performed, there are 2N possible
events, each with an associated polarity �a binary degree of
freedom�, but that, when events 2i−1 or 2i occur �with their
respective polarities�, only the outcome i is registered. The
above derivation of the quantum formalism lends support to
the plausibility of these assertions, but raises the immediate
question as to why the measurement does not �or cannot�
resolve the individual events and their associated polarities.
A tentative answer to this question is as follows.

First, the overall phase � of a system in an eigenstate of
energy E changes at the rate E /�. Consequently, the prob-
abilities P2i−1 and P2i of events 2i−1 and 2i are oscillating at
frequency 2E /h, and the polarities of these events are
switching at frequency E /h. Now, it seems reasonable to
suppose that, if one wishes to observe the realization of
events 2i−1 or 2i and their polarities, the measurement per-
formed must have a temporal resolution �t�h /2E. Con-
versely, if the measurement does not have such resolution, it
seems reasonable to suppose that one event and its polarity
will not be cleanly realized, but rather both events and their
polarities will be realized over the duration of the measure-
ment, leading to the situation in which only the property that
both events hold in common, namely the outcome i, can be
observed, with the other properties being “smeared out.”

Now, according to the energy-time uncertainty relation
�E�t�� /2 �37�, the energy associated with the interaction
used to implement a measurement with the temporal reso-
lution needed to observe the individual events and polarities
has uncertainty �E�

1
2� /�t, so that �E�E /2�. From E

=mc2, it then follows that �E must be of the order of the rest
energy of the system. A measurement of such energy would
therefore probably not preserve the integrity of the system,
thereby violating the assumption made in Sec. II A that in-
teractions preserve the integrity of the system. Hence, a mea-
surement with the requisite temporal resolution cannot be
consistently described within the quantum formalism. Con-
versely, a measurement that, with high probability, preserves

INFORMATION-GEOMETRIC RECONSTRUCTION OF … PHYSICAL REVIEW A 78, 052120 �2008�

052120-15



the integrity of the system, will have insufficient temporal
resolution to resolve the individual events and their polari-
ties.

B. Some implications of the deduction

1. Role of information in quantum theory

From the point of view afforded by the derivation, it ap-
pears that the concept of information, via the information
metric, plays a substantial role in giving rise to various struc-
tural features of the quantum formalism. First, we have seen
that, if the space of probability distributions is endowed with
the information metric, a transformation to the space where
the distributions are parametrized by the square roots of
probability is endowed with a Euclidean metric. Hence, even
at the level of classical probability theory, it appears, just as
one sees in the quantum formalism, that the square roots of
probability have a rather fundamental significance

Second, once a quantum state is represented as a unit
vector, Q= (�p1cos ���1� ,�p1sin ���1� , . . . ,�pNsin ���N�)T,
in a 2N-dimension real Euclidean space, the imposition of
the Metric Invariance postulate �which rests on the global
gauge condition� leads immediately to the function ����
=a�+b, with the measure over � being uniform. Hence, the
sinusoidal functions into which the phases, �i=a�i+b, in a
quantum state, v= ��p1ei�1 , . . . ,�pNei�N�T, enter can be di-
rectly traced to the concept of information.

Third, the requirement that transformations of the state
space preserve the metric leads to the conclusion that the
transformations must be orthogonal. As we have shown, it is
then only necessary to impose the Gauge Invariance and
Measure Invariance postulates �both of which rest on the
global gauge condition� to obtain the result that the set of
allowed transformations is in one-to-one correspondence
with the set of unitary and antiunitary transformations of a
suitably defined complex vector space.

2. Insights into the quantum formalism

The derivation provides a number of significant insights
into the quantum formalism, of which we mention only a
few. First, we note that, since the development of the quan-
tum formalism, there has been some uncertainty as to
whether the formalism is the most general formalism for the
description of quantum phenomena in flat space-time. Vari-
ous possibilities have been suggested for the generalization
of the formalism that, from a purely mathematical point of
view, seem to be plausible, and which may have interesting
physical consequences. For example, the possibility of non-
unitary temporal evolution has been considered by several
authors �8–10�. The derivation given above gives rise to a
mathematical structure that is neither more nor less general
than the finite-dimensional abstract quantum formalism, and

thereby lends support to the view that the quantum formal-
ism is the most general formalism for the description of
quantum phenomena in flat space-time.

Second, the prevalence of complex numbers in the quan-
tum formalism is perhaps its most mysterious mathematical
features. In the derivation, one can see that the emergence of
the complex numbers is a direct consequence of the imposi-
tion of the global gauge invariance condition. Prior to the
imposition of the two postulates based on this condition
�namely, the Gauge Invariance and the Measure Invariance
postulates�, the state space is S2N−1 in a 2N-dimensional real
space, and the set of all possible transformations is the set of
orthogonal transformations. However, these two postulates
restrict the set of all possible transformations of Q2N to a
subset of the orthogonal transformations, and thereby allow
the set of all possible transformations to be represented by
the set of all unitary and antiunitary transformations of a
suitably defined complex vector space. The critical impor-
tance of the global gauge invariance condition is striking: the
physical irrelevance of the overall phase of a pure state is
usually regarded as being a minor mathematical feature of
the quantum formalism, but the reconstruction presented
here suggests that this simple-looking feature has a central
role to play.

Finally, it has been suggested that the quantum formalism
may owe at least a significant part of its structure to the fact
that quantum theory permits nonlocality and no-signaling to
“peacefully coexist” �3�, and a number of recent reconstruc-
tive approaches ��7,21,29�, for example� rely upon postulates
that concern the behavior of physically separated subsystems
to derive the mathematical features of the quantum formal-
ism that are necessary to describe a single physical system.
However, the above derivation, which makes no reference to
subsystems in deriving the quantum formalism for a single
system, suggests that such considerations are not, in fact,
necessary.
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